Improving spacer delivery for low flow (paediatric) use.

Development work

Mark Sanders¹, Ronald Bruin¹, Cuong Tran²

^ا Clement Clarke International Ltd., Edinburgh Way, Harlow, CM20 2TT, UK. الأكل كالمالية المالية ا

Background

- Children struggle to coordinate pMDI actuation with correct inhalation.
- Receipt of drug via tidal breathing is an attractive solution.
- All paediatric pMDI users should have a spacer or valved holding chamber (VHC).
- What factors are important when choosing a VHC recommendation, prescription status, practicality, lung function ?

Introduction

- Selection is rightly influenced by scientific evaluation. However :
 - usual 30L/min flow rate assessments do not represent paediatric tidal breathing.
 - at low flow rates, VHCs with open exhaust valves 'steal' inspired air and reduce drug lung deposition (Figure 1).²

Objectives

- Valve technology research to improve Able Spacer[®]-2 function at low flow rates.
- Deliver improved utility for young children.

Assessments

- Exemplar pMDI 100µg salbutamol (Ventolin Evohaler[®]).
- Standard flow 30L/min Next Generation Impactor aerosol performance.
- Low flow 10L/min Dosage Unit Sampling Apparatus (DUSA) quantifying drug retention within the VHC.
- Three Able Spacer-2 valve assembly comparisons plus Ventolin pMDI alone.

References

Clement Clarke Intern

of Cathe

- 1. Mitchell JP, Nagel MW. In vitro performance testing of three small volume-holding chambers under conditions that correspond with use by infants and small children. J Aerosol Med 1997; 10 (4): 341-349 (https://doi.org/10.1089/jam.1997.10.341, accessed 14/09/2017).
- Furon E, Vanel F, Porée T, Dubus J-C. Computational fluid dynamics simulations and in vitro testing on the importance of expiratory valves for spacers. J Aerosol Med Pulmon Drug Del 2017; 30(3): A-12. Full poster available on researchgate.net
- 3. Oliveira RF. Silva MV. Teixeira SFCF, Cabral-Marques HM, Teixeira JCF. Efficiency of valved holding chambers: experimental full dose assessment. J Aerosol Med Pulmon Drug Del 2015; 28: A-2. Full poster available on researchgate.net

MS and RB are employees of Clement Clarke International Limited which provided the study funding.

Conclusions

		•	
tional Limited gratefully acknowledge the assistance	L		
Bannister in the production of this poster		, c	1

Able Spacer-2 VHC mouthpiece and valve					
Current		Development examples			
	Valve — additional cuts and shape change				
	Valve and chamber top support — exit port enlarged (circled)				
	New two-piece valve support — closes during inhalation				

Poculto		
Results	Fine Particle Fraction (%<5µm)	Fine Particle Dose (μg<5μm)
pMDI only	47.9 ± 2.4	41.7 ± 4.4
+ Current valve	55.0 ± 2.0	55.8 ± 9.2
+ Development-1	51.8 ± 2.4	52.2 ± 9.9
+ Development-2	55.4 ± 2.5	53.1 ± 10.3

Table 1 - Similar key aerosol characteristics at 30 L/min (mean ± SD)

	μg recovered per actuation	% recovered of emitted dose
pMDI only	82.1 ± 5.8	≡ 100.0
+ Current valve	43.6 ± 6.5	49.4 ± 6.3
+ Development-1	45.1 ± 2.8	56.6 ± 4.4
+ Development-2	52.7 ± 4.5	58.0 ± 2.1

Table 2 - Improved DUSA recovery at 10 L/min (mean ± SD)

- "In vitro measurements made at constant high flow rates in excess of 20 L/min do not reveal [these] differences in performance that are clinically significant, and may lead the physician to prescribe a device that under certain conditions may not deliver any drug to infants or small children." 1
- At low flow rates, the current research demonstrates improved performance using new valve assemblies.
- The data also demonstrate improvements on previous low flow, dose iniformity comparator research. ³